

DEPARTMENT OF MECHANICAL ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY SRINAGAR Hazratbal, Kashmir (J&K)-190006

THEORY OF ELASTICITY (MEC 803)

Assignment No. 1 (Due Date of Submission: 1st May 2020)

Note:

•	Students are advised to submit the assignment online by scanning the handwritten assignment on or before the date of submission at mohsinkhan@nitsri.ac.in	
٠	Please ensure that the Roll No along with name should be written in the front page of Assignment	
Q.1	Derive expressions for compatibility for a two dimensional problems.	CO2
Q.2	Derive expressions for strain at a point in terms of stress components.	CO1
Q.3	Explain Saint-Venant's principle.	CO2
Q.4	What is the value of the theoretical stress concentration factor, Kt for the	CO4
	following situations:	
(i)	A circular hole in an infinite plate subjected to uniaxial tensile loading	
(ii)	A circular hole at the centre of a rotating disk.	
Q.5	Explain the procedure for determination of stresses on any plane inclined to	CO1
	regular set of axes. The inclination of the plane is defined by direction cosines.	
Q.6	Explain how about Fourier series can be applied for two dimensional problem	CO2
	under gravity loading.	
Q.7	Discuss various applications of polar coordinates and advantages of considering	CO2
	problem using polar coordinates.	
Q.8	Explain with an example Solution of torsional problems by energy method.	CO3
Q.9	Explain the concept and assumptions involved in theory of elasticity?	CO1
Q.10	Discuss about Principle of superposition. Derive expression for Equations of	CO2
	equilibrium in three dimensions?	